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Ultrasonic waves are mechanical waves either in the bulk of a material or on the surface. 

All equations predicting the speed of sound in bulk materials have a general form of  

density

stiffness
Speed    

This is a consequence of the wave equation for ultrasonic and acoustic waves. In one-

dimension the general form of the wave equation is 
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General solutions (d’Alembert’s solution) predict two waves travelling at speed c in both 

the positive x-direction and the negative x-direction. 
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When either solution is used then the following relationship emerges 
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Note the stiffness/density as mentioned above. 

Explicit solutions have been found for many systems with rectangular, spherical and 

cylindrical geometry. Where an explicit solution cannot be found then computational methods 

such as the finite element and the finite difference methods can be used. They represent the 

vibrating system by point masses and springs located on a mesh spanning the volume of the 

system. Computers can be used to calculate approximate solutions. 

A. Reflection, transmission, refraction and mode conversion 

When a wave in one material passes through an interface into a second material some 

energy is reflected and some is transmitted. By considering the continuity of the amplitudes of 

waves normal and parallel to the interface it can be shown that the reflected intensity is a 

proportion R of the incident intensity 
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Where Z1 is the acoustic impedance of the first material and Z2 is the acoustic 

impedance of the second material and acoustic impedance equals the product of density and 

wave speed. The proportion of the beam transmitted, T, is given by 

RT 1  

If the angle of incidence is oblique and the angle with the normal is  then the reflected 

beam is at an angle  to the normal and 

 =  

Snell’s law applies to the refraction of ultrasonic and acoustic waves, with 2 the angle 

of refraction to the interface, c1 the speed of sound in the material supporting the incident wave 

and c2 the speed of sound in the material supporting the refracted wave. 
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Figure 1 

A photograph of ultrasonic waves rendered visible in glass. Compression waves at 2.5 MHz are 

travelling downwards, grazing a free surface where mode-conversion creates shear waves at the 

same frequency. Since the speed of the shear waves is lower, the wavelength is shorter and they 

are emitted at an angle to the compression waves. 

B. Transducer beams 

When a wave is launched from a transducer it is interesting to know how it travels 

thereafter. Firstly, plane waves emerge, with the same width as the transducer and, secondly, 

waves are created at its perimeter, known as edge waves. If the transducer is circular then the 

edge wave is an expanding toroid, this wave can be seen in cross-section in figures 2 and 3. 
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Close to the transducer, within a distance L, in the near field, the edge waves interfere with each 

other and with the plane waves, resulting in rapidly varying amplitudes with distance. Further 

away, in the far field, the edge waves are always approximately tangential to the plane waves in 

the centre of the beam and only constructive interference can occur.  

 

Figure 2 

Sketch illustrating how waves emerge (travelling from left to right) from a transducer and cross 

three regions: A near field, B and C the far field. 

 

Interference in the centre of the far field is always constructive if the edge waves are 

within half the wavelength /2 of the plane wave. This criterion can be used to predict the range 

of the near field, L, using simple geometry. If the aperture of the transducer is D then  

2

2

22 









D
LL   

Or to a first approximation  
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At the side of the beam in the far field, the edge waves from opposite sides of the 

aperture interfere destructively creating an amplitude null, or node, in the shape of a cone of 

semi-angle . Outside this cone the interference is successively constructive and destructive. 

Simple geometry can be used to estimate . 
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More rigorous arguments show that 

D


 22.1sin   

 

Edge waves 

Reflected waves 

Aluminum cylinder 

Reflected wave 

Incident plane 
waves 

Transmitted waves 
A 



Cambridge Ultrasonics   
Page 5 

Waves in Ultrasonics 

  

 

Figure 3 

Two photographs showing ultrasonic plane waves and edge waves (1.5 MHz) rendered visible in 

water. Photograph B shows waves approximately 10 s after the first. The solid, black circle is an 

aluminium cylinder viewed along its length. The photographs show the effects of reflection, 

transmission and reverberation. 

C. Attenuation 

A mechanical wave can lose energy by two principal mechanisms: thermoelastic losses 

in homogeneous materials (energy is converted into heat) or scattering in heterogeneous 

materials (the wave is scattered in many directions). Both mechanisms result in an gradual loss 

of intensity as the wave travels - the effect is referred to as attenuation. Scattering does not 

convert ultrasonic wave energy into another form of energy so no energy is lost by this 

mechanism but the wavefront loses coherence. The value of attenuation is proportional to 

frequency squared for thermoelastic losses. The way attenuation is measured can strongly 

influence the value when scattering is the dominant mechanism. The randomly distributed 

aggregate particles in concrete, for example, are random scatterers if the wavelength is equal to 

or less than the size of the aggregates. If attenuation is measured using a pair of 50 mm 

diameter transducers at 200 kHz (wavelength is approximately 20 mm) then the receiver will 

register a small signal, indicating high attenuation. The same experiment performed on a 

homogeneous material, like aluminum, results in a much larger signal. Concrete has a higher 
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attenuation than aluminum, measured this way. However, when an array of 10 mm diameter 

receivers is used as an energy detector then a different, much lower value of attenuation is 

measured for concrete (see figure 4). In medical diagnostic compound B-mode images random 

scattering is referred to as speckle. 

 

 

Figure 4 

Sketch to illustrate the effect of scattering losses in an attenuation measurement and the effect 

of receiver type on the result. The homogeneous material gives a strong signal with a single, 

coherent receiver. A heterogeneous material gives a low output (A) with a coherent receiver, 

indicating high attenuation. However, the heterogenous material gives a strong signal (B) with 

an energy detector, indicating low attenuation. Signal processor in A – simple summing circuit. 

Signal processor in B – envelope detector followed by summation. 

 

Attenuation, , is formally measured in nepers m-1 but it is more commonly measured in 

dB m-1 or sometimes in dB m-1 Hz-1.  The neper is a consequence of the exponential decay of 

intensity with distance. 

 (db m-1) = 20(log10e) (neper m-1) 
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It is also common to compare materials in terms of attenuation per wavelength 

(measured in dB) because the size of an experiment or ultrasonic system is usually an important 

underlying factor to consider and, generally, the size of the experiment in proportion to the 

wavelength. Table IV gives some typical attenuation values. 

 Attenuation 

 (db m-1) 

Attenuation 

/wavelength (db) 

Attenuation 

 (neper m-1) 

Water 1 MHz 0.22 1.5 x 102 2.5 x 10-2 

Water 1 GHz 2.2 x 105 1.5 x 1011 2.5 x 104 

Blood 1 MHz 18 1.2 x 104 2.1 

Air 1 MHz 1200 3.6 x 106 138 

Aluminium 1 GHz 7500 1.3 x 109 860 

 

Table I 

Variation of attenuation for four materials. 

 

D. Doppler effect 

When ultrasound of frequency F is reflected from a scatterer, which is moving relative to 

the material supporting the ultrasonic wave, then the frequency of the reflected wave is 

changed. The amount the frequency is changed, Fd, is known as the Doppler-shift frequency and 

the value depends upon the vector velocity, v, of the scatterer relative to the vector of the 

ultrasound frequency, F, in the direction of travel of the ultrasonic wave (speed c). Where v is 

positive if it is measured in the same direction as F. 

Fv
c

Fd 
2

 

The Doppler effect is exploited in medical ultrasonic systems to measure the speed of 

flowing blood or the speed of heart valves opening and closing. It is also used in some flow 

meters for metering fluids, for example water or oil and gas. The Doppler shift frequency for a 

wave of 2 MHz passing through blood flowing at 10 cm s-1 at 60o away from the transducer is –

125 Hz (frequency reduction). The frequency of the returning echo will be 1999875 Hz. Colour is 

used in compound B-mode images to indicate the presence of Doppler shifts. 

E. Dispersion 
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Experiments show that materials generally cause pulses of waves to become longer as 

they travel. The effect is called dispersion. Dispersion is caused by waves of different 

frequencies travelling at different speeds, with the lowest frequencies usually travelling fastest. 

Dispersion and attenuation are closely related. There are many causes of dispersion, including: 

the existence of boundaries to the material, particularly if they are regular or symmetrical; 

inherent material properties at the molecular and atomic level, associated with force transfer 

and effective mass; scattering of waves in heterogeneous materials; the dependence of wave 

speed on amplitude (non-linear dispersion). 

A mathematical expression for a travelling wave is 

)sin()sin( tkxtkx    

Where x is the distance travelled, t is time, k=2/ is the wave number ( is the 

wavelength) and =2F is the angular frequency (F is frequency). The phase velocity or the 

speed of a single frequency component in the wave is v = F = /k. The speed at which energy 

or modulation moves along with the wave, vg, is called the group velocity. It is given by 

dk
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The effect of dispersion on a pulse is progressive, depending upon the distance travelled 

in the material. Studying dispersion can be aided by using time-frequency representations of 

transmitted signals. 

F. Sonar equation 

The sonar equation is of fundamental importance in all ultrasonic and acoustic systems 

although it is more widely used in sonar design than in other applications. It is used to predict 

the voltage level, Rx, of an echo from a target given an electrical voltage drive, Tx, to the 

transmitter. In simplified form it is 

4

2 ..
r
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Where Cx is the electromechanical conversion efficiency of the transducer, assumed 

here to be used both for transmission and reception hence raised to power of two, S is the 

strength of the scatterer (how much incident energy it reflects back) and r is the range to the 

scatterer, assuming an omni-directional transducer in a deep ocean. The power of the 

transmitter is spread out over a spherically expanding shell of area 4r2 as it travels to the 

scatterer. At the scatterer some power is reflected back and it becomes a secondary source, 
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creating a second spherically expanding shell of area 4r2, which travels back to the 

transmitter/receiver. It is the combined effect of the two expanding shells that accounts for the 

1/r4 term. Factors can also be included to allow for attenuation during transmission. 

J. Derived SI units encountered in ultrasonics and acoustics 

Table V lists the majority of units used in the field of ultrasonics and acoustics.  

Impedance = density x speed 

Intensity = energy /area 

Quantity Unit name Unit symbol Derivation 

Attenuation   neper m-1 (or dB m-1) 

Density   Kg m-3 

Frequency Hertz Hz s-1 

Impedance Rayl Z kg m-2 s-1 

Intensity   W m-2 

Pressure Pascal Pa N m-2 

Speed   m s-1 

Wavelength   m 

Table V 

Quantities commonly used in the field of ultrasonics and acoustics. 
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